Package: latentnet 2.11.0-1649

Pavel N. Krivitsky

latentnet: Latent Position and Cluster Models for Statistical Networks

Fit and simulate latent position and cluster models for statistical networks. See Krivitsky and Handcock (2008) <doi:10.18637/jss.v024.i05> and Krivitsky, Handcock, Raftery, and Hoff (2009) <doi:10.1016/j.socnet.2009.04.001>.

Authors:Pavel N. Krivitsky [aut, cre], Mark S. Handcock [aut], Susan M. Shortreed [ctb], Jeremy Tantrum [ctb], Peter D. Hoff [ctb], Li Wang [ctb], Kirk Li [ctb], Jake Fisher [ctb], Jordan T. Bates [ctb]

latentnet_2.11.0-1649.tar.gz
latentnet_2.11.0-1649.zip(r-4.5)latentnet_2.11.0-1649.zip(r-4.4)latentnet_2.11.0-1649.zip(r-4.3)
latentnet_2.11.0-1649.tgz(r-4.4-x86_64)latentnet_2.11.0-1649.tgz(r-4.4-arm64)latentnet_2.11.0-1649.tgz(r-4.3-x86_64)latentnet_2.11.0-1649.tgz(r-4.3-arm64)
latentnet_2.11.0-1649.tar.gz(r-4.5-noble)latentnet_2.11.0-1649.tar.gz(r-4.4-noble)
latentnet_2.11.0-1649.tgz(r-4.4-emscripten)latentnet_2.11.0-1649.tgz(r-4.3-emscripten)
latentnet.pdf |latentnet.html
latentnet/json (API)
NEWS

# Install 'latentnet' in R:
install.packages('latentnet', repos = c('https://statnet.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/statnet/latentnet/issues

Uses libs:
  • openblas– Optimized BLAS
Datasets:
  • davis - Southern Women Data Set (Davis) as a bipartite "network" object
  • tribes - Read Highland Tribes

On CRAN:

8.03 score 19 stars 3 packages 179 scripts 952 downloads 2 mentions 8 exports 39 dependencies

Last updated 13 days agofrom:e6b5922503. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-win-x86_64NOTENov 05 2024
R-4.5-linux-x86_64NOTENov 05 2024
R-4.4-win-x86_64NOTENov 05 2024
R-4.4-mac-x86_64NOTENov 05 2024
R-4.4-mac-aarch64NOTENov 05 2024
R-4.3-win-x86_64NOTENov 05 2024
R-4.3-mac-x86_64NOTENov 05 2024
R-4.3-mac-aarch64NOTENov 05 2024

Exports:as.ergmm.par.listbic.ergmmcontrol.ergmmergmmergmm.controlergmm.drawpieergmm.priorshow.ergmm

Dependencies:abindcachemclicodaDEoptimRergmevaluatefansifastmapgluehighrknitrlatticelifecyclelpSolveAPImagrittrMASSMatrixmemoisemvtnormnetworkpillarpkgconfigpurrrrbibutilsRdpackrlangrlerobustbasesnastatnet.commonstringistringrtibbletrustutf8vctrsxfunyaml

Readme and manuals

Help Manual

Help pageTopics
latentnet: Latent Position and Cluster Models for Statistical Networkslatentnet-package latentnet
Convert an ERGMM Object to an MCMC list object for Diagnostics.as.mcmc.ergmm as.mcmc.list.ergmm
Bilinear (inner-product) latent space, with optional clusteringbilinear-ergmTerm InitErgmTerm.bilinear
Auxiliary for Controlling ERGMM Fittingcontrol.ergmm ergmm.control
Southern Women Data Set (Davis) as a bipartite ``network'' objectdavis
Fit a Latent Space Random Graph Modelergmm latent latentcluster
Class of Fitted Exponential Random Graph Mixed Modelsergmm-class ergmm.object print.ergmm show.ergmm
Edge Weight Distribution FamiliesdlpY.ddispersion.fs dlpY.ddispersion.normal.identity dlpY.deta.Bernoulli.logit dlpY.deta.binomial.logit dlpY.deta.fs dlpY.deta.normal.identity dlpY.deta.Poisson.log ergmm-families ergmm.families EY.Bernoulli.logit EY.binomial.logit EY.fs EY.normal.identity EY.Poisson.log fam.par.check families.ergmm family family.IDs family.names lpY.Bernoulli.logit lpY.binomial.logit lpY.fs lpY.normal.identity lpY.Poisson.log lpYc.Bernoulli.logit lpYc.binomial.logit lpYc.fs lpYc.normal.identity lpYc.Poisson.log pY.Bernoulli.logit pY.binomial.logit pY.fs pY.normal.identity pY.Poisson.log rsm.Bernoulli.logit rsm.binomial.logit rsm.fs rsm.normal.identity rsm.Poisson.log
Draw a pie chart at a specified location.ergmm.drawpie
A List of ERGMM Parameter Configuration$.ergmm.par.list as.ergmm.par.list as.mcmc.list.ergmm.par.list del.iteration ergmm.par.list ergmm.par.list.object length.ergmm.par.list unstack.ergmm.par.list [.ergmm.par.list [[.ergmm.par.list
Auxiliary for Setting the ERGMM Priorergmm.prior
Euclidean distance latent space, with optional clusteringeuclidean-ergmTerm InitErgmTerm.euclidean
Squared euclidean distance latent space, with optional clusteringeuclidean2-ergmTerm InitErgmTerm.euclidean2
Conduct Goodness-of-Fit Diagnostics on a Exponential Family Random Graph Mixed Model Fitgof gof.ergmm
Intercept1-ergmTerm InitErgmTerm.Intercept Intercept-ergmTerm intercept-ergmTerm
Edge covariates for the latent modelInitErgmTerm.latentcov latentcov-ergmTerm
Covariate effect on self-loopsInitErgmTerm.loopcov loopcov-ergmTerm
Factor attribute effect on self-loopsInitErgmTerm.loopfactor loopfactor-ergmTerm
Self-loopsInitErgmTerm.loops loops-ergmTerm
Conduct MCMC diagnostics on an ERGMM fitmcmc.diagnostics mcmc.diagnostics.ergmm
Merge two or more replications of ERGMM fitsmerge.ergmm
Plotting Method for class ERGMMplot.ergmm plot3d.ergmm
Predicted Dyad Values for an ERGMM.predict.ergmm
Receiver covariate effectInitErgmTerm.receivercov receivercov-ergmTerm
Random receiver effectInitErgmTerm.rreceiver rreceiver-ergmTerm
Random sender effectInitErgmTerm.rsender rsender-ergmTerm
Random sociality effectInitErgmTerm.rsociality rsociality-ergmTerm
Sender covariate effectInitErgmTerm.sendercov sendercov-ergmTerm
Draw from the distribution of an Exponential Random Graph Mixed Modelsimulate simulate.ergmm simulate.ergmm.model
Sociality covariate effectInitErgmTerm.socialitycov socialitycov-ergmTerm
ERGMM Fit Summariesbic.ergmm print.summary.ergmm summary.ergmm summary.ergmm.object
Read Highland Tribestribes