
Package: ergmgp (via r-universe)
August 22, 2024

Version 0.1-1

Date 2023-12-04

Title Tools for Modeling ERGM Generating Processes

Depends network (>= 1.15), ergm (>= 3.10.1), networkDynamic (>= 0.10),
parallel

Imports statnet.common (>= 4.2.0)

LinkingTo ergm

Description Provides tools for simulating draws from continuous time
processes with well-defined exponential family random graph
(ERGM) equilibria, i.e. ERGM generating processes (EGPs). A
number of EGPs are supported, including the families identified
in Butts (2023) <doi:10.1080/0022250X.2023.2180001>, as are
functions for hazard calculation and timing calibration.

License GPL-3 + file LICENSE

URL https://statnet.org

BugReports https://github.com/statnet/ergmgp/issues

Repository https://statnet.r-universe.dev

RemoteUrl https://github.com/statnet/ergmgp

RemoteRef HEAD

RemoteSha c2ef9681c640de928ad1eb8ac87c379b3cd528e9

Contents
ergmgp-package . 2
durations . 5
EGPHazard . 7
EGPRateEst . 9
simEGP . 11

Index 16

1

https://doi.org/10.1080/0022250X.2023.2180001
https://statnet.org
https://github.com/statnet/ergmgp/issues

2 ergmgp-package

ergmgp-package Tools for Modeling ERGM Generating Processes

Description

Tools for simulation and analysis of continuous time graph processes with equilibria that can be
described in exponential family random graph (ERGM) form.

Details

A random graph G on support G is said to be expressed in exponential family random graph
(ERGM) form when its probability mass function (pmf) is written as

Pr(G = g|θ,X) =
exp

(
θTw(g,X)

)
h(g)∑

g′∈G exp (θTw(g′, X))h(g′)

where θ is a parameter vector, w is a vector of sufficient statistics, X is a covariate set, and h is
a reference measure. This form is quite general; in particular, any pmf on finite support can be
written in ERGM form (albeit not always elegantly), making it a natural language for expressing
graph distributions.

Now, consider a continuous time process whose state space is G. A process of this type having
an equilibrium distribution that can be written in (known) ERGM form is said to be an ERGM
generating process or EGP. Although there are many types of EGPs, perhaps the most natural
are continuous time Markov chains (CTMCs) whose transitions involve the addition or removal
of individual edges from the current graph state. The transition rates of such CTMCs have the
topology of the Hamming adjacency on G; this is only sensible when considering graphs on a fixed
vertex set, which is the typical use case. We can think of this class of EGPs as continuous time
analogs of the Markov chains used in ERGM simulation (see ergm), with equilibrium obtained in
the limit of time rather than simulation steps. EGPs are potentially useful as dynamic interpretations
of empirically obtained ERGMs, or as a priori models in their own right. Since many Markovian
EGPs are identified by their equilibrium ERGM together with a pacing constant, they are also
natural choices when dynamics must be inferred from limited data (e.g., a cross-sectional network
observation together with pacing or duration information).

The ergmgp package supports a number of different EGPs, all of which are currently Markovian
with support on graphs or digraphs of fixed order. The following EGPs are currently supported;
all definitions and notation follow Butts (2023). Define q(g) = θTw(g,X) + lnh(g) to be the
graph potential; in some cases, separate potentials (qf and qd) may be employed for the formation
and dissolution of edges. For brevity, we define the normalizing factor of the equilibrium ERGM
distribution by Z =

∑
g′∈G q(g′), let we be the edge count statistic, and let H(g) be the Hamming

neighborhood of g (i.e., the set of graphs reachable by single edge changes, or “toggles”). All
transition rates from graph a to b (denoted a → b) zero for b ̸∈ H(a). Processes not otherwise
noted were introduced in Butts (2023).

Longitudinal ERGM (LERGM) Description: Introduced by Koskinen and Snijders (2007), this pro-
cess was originally conceived of as a continuum analog to the Gibbs sampler, with tran-
sition rates that are increasing with differences in graph potential. Grazioli et al. (2019)

ergmgp-package 3

subsequently showed that it can also be derived from a physical model with locally
Arrhenius-like kinetics. This process has a maximum change rate (but no minimum),
and may thus be plausible in settings for which changes can only be made when (exoge-
nously determined) opportunities arise.

Event Rate (a → b): [1 + exp[q(a)− q(b)]]−1

Equilibrium: exp[q(a)]/Z

Competing Rate Stochastic Actor-Oriented Model (CRSAOM) Description: Introduced as an EGP
by Snijders (2001), this model was originally proposed as a behavioral process, where
vertices represent actors controlling their outgoing edges, the rate at which actors make
tie changes is a function of the attractiveness of the networks reachable by making such
changes, and (given opportunity to act) edge changes are chosen by a multinomial logit
with utility function q. Dynamics in this model are distinctive in being driven solely by
the attractiveness of the target state, which can sometimes lead to rapid state switching
when multiple high-potential states are Hamming-adjacent.

Event Rate (a → b): exp[q(b)]

Equilibrium: exp[q(a)]/Z

Change Inhibition (CI) Description: In the same sense that the LERGM is analogous to a con-
tinuum Gibbs sampler, this process is loosely analogous to continuum Metropolis algo-
rithm. Downhill transitions with respect to the graph potential occur with a rate that is
decreasing with the potential difference; uphill transitions, however, occur at a fixed rate
(irrespective of the potential difference). The process thus works by selectively inhibiting
downhill moves, rather than by preferentially moving to graphs of highest local potential.

Event Rate (a → b): min(1, exp[q(b)− q(a)])

Equilibrium: exp[q(a)]/Z

Differential Statibility (DS) Description: Analogous to a “win-stay, lose-shift” process, transi-
tion targets in this EGP are chosen uniformly at random, with structure arising entirely
from transition times. The time to exit a state g is proportional to exp[q(g)], making
high-potential states exponentially more persistent than low-potential states. Note that
this process is in a sense the inverse of the CRSAOM, being dependent only on the potential
of the source state (while the CRSAOM depends only on the potential of the target state).
Since the transitions themselves from a random walk, it should be noted that this process
can generate very large numbers of transition events involving low-potential states that,
while taking little phenomenological time, nevertheless are expensive to compute.

Event Rate (a → b): |H(a)|−1 exp[−q(a)]

Equilibrium: exp[q(a)]/Z

Constant Dissolution Continuum STERGM (CDCSTERGM) Description: This process is a con-
tinuum version of the discrete time constant dissolution separable temporal ERGM (STERGM)
introduced by Carnegie et al. (2015); here, edges are lost randomly at a fixed rate, with a
formation potential qf that governs edge addition. This is a special case of the continuum
STERGMs (below), and is particularly easy to identify from limited information.

Event Rate (a → b): If b is formed by adding an edge to a, then exp[qf (b)−qf (a)]; otherwise
exp[θd]

Equilibrium: exp[qf (a)− θdwe(a)]/Z

Constant Formation Continuum STERGM (CFCSTERGM) Description: This process is analogous
to the CDCSTERGM, except that in this case edge formation occurs randomly at a fixed rate,
with a dissolution potential qd governing edge loss. It is a simple model for settings in

4 ergmgp-package

which edges arise from essentially idiosyncratic events, with the resulting network struc-
ture subsequently stabilizing or destabilizing particular edges.

Event Rate (a → b): If b is formed by adding an edge to a, then exp[θf]; otherwise exp[qd(b)−
qd(a)]

Equilibrium: exp[qd(a) + θfwe(a)]/Z

Continuum STERGM (CSTERGM) Description: This process represents a continuum limit of the
discrete time separable temporal ERGMs (STERGMs) introduced by Krivitsky and Hand-
cock (2014). Edge formation is here governed by one potential (qf), while dissolution is
governed by another (qd), allowing these processes to be governed by different effects.
The resulting equilibrium pmf is based on the sum of both potentials.

Event Rate (a → b): If b is formed by adding an edge to a, then exp[qf (b)−qf (a)]; otherwise
exp[qd(b)− qd(a)]

Equilibrium: exp[qd(a) + qf (a)]/Z

Continuum TERGM (CTERGM) Description: This process is a continuum limit of the discrete
time temporal ERGMs (TERGMs) introduced in Robins and Pattison (2001). The tran-
sition rates for this class are particularly natural, with the log rates being equal to the
potential differences between states. Note that the potential of the equilibrium ERGM is
scaled by a factor of 2 from the transition potential (as can be obtained from the CSTERGM
by letting qf = qd); intuitively, this arises because states of higher potential are both more
stable (lower exit rates) and more attractive (higher entrance rates) than states of lower
potential.

Event Rate (a → b): exp[q(b)− q(a)]

Equilibrium: exp[2q(a)]/Z

Further details on each process can be found in Butts (2023). All of the above transition rates are
defined up to an arbitrary pacing constant (which is generally specified separately, and taken to be 1
in package tools if not otherwise indicated). Note that the LERGM and Change Inhibition processes
have unit-maximum transition rates, and thus the pacing constant sets the maximum rate of change.

Information on functions for simulation or analysis of EGPs is provided in their respective manual
pages. Information on ERGMs and their specification can be found within the ergm page in the
ergm library.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, Carter T. (2023). “Continuous Time Graph Processes with Known ERGM Equilibria: Con-
textual Review, Extensions, and Synthesis.” Journal of Mathematical Sociology. doi:10.1080/
0022250X.2023.2180001

Carnegie, Nicole B.; Krivitsky, Pavel N.; Hunter, David R.; and Goodreau, Steven M. (2015). “An
Approximation Method for Improving Dynamic Network Model Fitting.” Journal of Computational
and Graphical Statistics, 24(2):502-519.

Grazioli, Gianmarc; Yu, Yue; Unhelkar, Megha H.; Martin, Rachel W.; and Butts, Carter T. (2019).
“Network-based Classification and Modeling of Amyloid Fibrils.” Journal of Physical Chemistry,
B, 123(26):5452-5462.

https://doi.org/10.1080/0022250X.2023.2180001
https://doi.org/10.1080/0022250X.2023.2180001

durations 5

Koskinen, Johan H. and Snijders, Tom A. (2007). “Bayesian Inference for Dynamic Social Net-
work Data.” Journal of Statistical Planning and Inference, 137(12):393–3938. 5th St. Petersburg
Workshop on Simulation, Part II.

Krivitsky, Pavel N. and Handcock, Mark S. (2014). “A Separable Model for Dynamic Networks.”
Journal of the Royal Statistical Society, Series B, 76(1):29-46.

Robins, Garry L. and Pattison, Philippa E. (2001). “Random Graph Models for Temporal Processes
in Social Networks.” Journal of Mathematical Sociology, 25:5-41.

Snijders, Tom A. B. (2001). “The Statistical Evaluation of Social Network Dynamics.” Sociological
Methodology, 31:361-395.

See Also

simEGP, EGPHazard, EGPRateEst, ergm, durations

durations Obtain Edge Spell Durations from an ERGM Generating Process Tra-
jectory

Description

Given an input trajectory (in networkDynamic form, or network form with additional attributes),
return the set of all edge durations (along with censoring information, if desired).

Usage

durations(net, censor = c("obs", "omit"), return.censoring = TRUE)

Arguments

net a network or networkDynamic object containing the trajectory information.

censor how should censoring be handled? (Currently, only returning observed spell
lengths and omitting censored spells are supported.)

return.censoring

logical; return censoring information?

Details

This function extracts information on edge spells (periods of time in which edges are present) from
the input network, and returns the spell durations (optionally, together with censoring information).
The durations should not be assumed to be in any particular order; this function is generally invoked
to examine duration distributions.

If net is a networkDynamic object, both spell and censoring information are extracted from its
edge activities. If net is a network object, then its "LastChangeTime" network attribute is used to
obtain spell information. (Both can be obtained from simEGP with appropriate settings.) Currently,
network objects with "EventHistory" attributes are not supported - use the networkDynamic
output type to examine complete event histories. For the network case, the observation period is

6 durations

assumed to span the interval from 0 to net%n%"Time" (so be sure that temporal offsets were not
used if employing that data type).

Spells may be left-censored, right-censored, or both. censor=="obs" results in lengths being re-
ported as-is (subject to truncation to the observation period), and censor=="omit" results in cen-
sored spells being omitted. Censoring indicators are also included when return.censoring==TRUE.
Note that if "LastChangeTime" information is being used, all spells are censored (we see only the
onset times for edges that were present when the simulation was terminated), so the "omit" option
will return a zero-length vector.

When using durations to estimate equilibrium duration distributions, it is important to bear in
mind that EGP trajectories stopped by event count are not terminated at a random time, and hence
will provide biased estimates. Consider using EGPRateEst to calibrate a reasonable simulation
time, and sampling with a temporal stopping rule.

Value

A vector of spell durations (order not guaranteed), or a matrix containing said durations and cen-
soring indicators (0=uncensored, 1=right-censored, 2=left-censored, and 3=interval censored).

Author(s)

Carter T. Butts <buttsc@uci.edu>

See Also

simEGP

Examples

#Examples are a bit slow, so not automatically run

#Generate a simple CD-CSTERGM trajectory; equilibrium mean outdegree
#is 2, dissolution rate is 1/3
set.seed(1331)
n <- 25
net <- simulate(network.initialize(n)~edges, coef=log(2/(n-3)))
traj <- simEGP(net~edges, coef=list(formation=log(2/(n-3)*1/3),

dissolution=log(1/3)), time=5000, process="CDCSTERGM",
return.changetime=TRUE, verbose=FALSE)

network.edgecount(traj)/(n-1) #Mean degree apx 2
dur <- durations(traj) #Get durations
head(dur) #All are right-censored
mean(dur[,1]) #Apx 3 (despite censoring)

#Repeat, but now using a networkDynamic object
set.seed(1331)
net <- simulate(network.initialize(n)~edges, coef=log(2/(n-3)))
traj <- simEGP(net~edges, coef=list(formation=log(2/(n-3)*1/3),

dissolution=log(1/3)), time=500, process="CDCSTERGM",
return.networkDynamic=TRUE, verbose=FALSE)

slice <- traj %t% 499 #Take a slice near the end
network.edgecount(slice)/(n-1) #Mean degree apx 2

EGPHazard 7

dur <- durations(traj) #Get durations
head(dur) #More of a mix
mean(dur[,1]) #Apx 3
hist(dur[,1], xlab="Time", main="Duration Distribution") #Visualize

EGPHazard Calculate Transition Hazards for an ERGM Generating Process

Description

Given an EGP and an initial state, calculate the transition rates to one or more neighboring states.

Usage

EGPHazard(form, coef, toggles = NULL, rate.factor = 1, process = c("LERGM",
"CRSAOM", "CI", "DS", "CDCSTERGM", "CFCSTERGM", "CSTERGM", "CTERGM"))

Arguments

form an ERGM formula for the EGP (or a list with formation and dissolution
formulas, for CSTERGM processes). The left-hand side is used as the current state
when computing transition rates.

coef a vector of EGP coefficients, or a list of vectors with elements formation and
dissolution for CSTERGM and variants.

toggles edge variables to evaluate; passing "all" or NULL leads to all edge variables
being evaluated, "edges" evaluates only dissolution events, "nulls" evaluates
only formation events, and passing a two-column matrix of IDs (tail, head order)
evaluates the selected dyads.

rate.factor rate or pacing factor (sets the time scale).

process the ERGM generating process to use.

Details

An ERGM generating process (EGP) is a continuous time graph process with an equilibrium distri-
bution having a known ERGM form. See ergmgp for an overview of EGPs, including the specifica-
tions supported here.

EGPHazard calculates the log transition rates (i.e., hazards) from an initial or current state (specified
by the left-hand side of the input formula) to one or more target states. These states are specified by
the edge variables whose states would change (often called “toggles” in ERGM nomenclature). By
default, all possible transitions are evaluated; this can also be obtained by setting toggles=="all".
Dissolution rates for all current edges can be obtained by setting toggles=="edges", and formation
rates for all current nulls can be obtained by setting toggles=="nulls". Otherwise, the toggles
argument expects a two-column matrix of tail and head vertex IDs indicating the edge variables to

8 EGPHazard

be evaluated. Note that only instantaneous rates from the origin state are computed; toggles are not
cumulative.

EGP specifications are as per simEGP. Transition rates for all currently implemented EGPs follow
the specifications of Butts (2023), with the trivial addition of a pacing constant for all families
(which simply sets the timescale).

Value

a matrix containing the toggles, indicators for whether each event would have been a formation
event, and the log event hazards (one row per toggle).

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, Carter T. (2023). “Continuous Time Graph Processes with Known ERGM Equilibria: Con-
textual Review, Extensions, and Synthesis.” Journal of Mathematical Sociology. doi:10.1080/
0022250X.2023.2180001

See Also

ergmgp for information on EGPs, ergm for information on ERGM specifications, simEGP

Examples

#Simulate a small network with triadic dependence
n <- 25
set.seed(1331)
co <- c(log(2.5/(n-3.5)), -0.75)
net <- simulate(network.initialize(n, directed=FALSE) ~ edges + esp(0),

coef = co)

#Compute all rates under a LERGM
lr <- EGPHazard(net ~ edges + esp(0), coef = co, process = "LERGM")
head(lr) #Sender, receiver, formation (1=yes), log rate

#Use a toggle matrix to obtain the same outcome
lrt <- EGPHazard(net ~ edges + esp(0), coef = co, toggles = lr[,1:2],

process = "LERGM")
all(lrt == lr) #TRUE

#Examine edge dissolution rates
ldissr <- EGPHazard(net ~ edges + esp(0), coef = co, toggles = "edges",

process = "LERGM")
a <- function(z){(z-min(z))/diff(range(z))}
plot(net, edge.col = hsv(a(ldissr[,4])*0.6)) #Blue=fast, red=slow

https://doi.org/10.1080/0022250X.2023.2180001
https://doi.org/10.1080/0022250X.2023.2180001

EGPRateEst 9

EGPRateEst Estimate Event Rates for an ERGM Generating Process

Description

Given an EGP, estimate either the expected time required for a specified number of transitions to
occur, or the expected number of transitions within a specified time period.

Usage

EGPRateEst(formula, coef, process = c("LERGM", "CRSAOM", "CI", "DS",
"CDCSTERGM", "CFCSTERGM", "CSTERGM", "CTERGM"), time.target = NULL,
event.target = NULL, reps = 25, cores = 1, rate.factor = 1,
verbose = FALSE, ...)

Arguments

formula an ERGM formula for the EGP (or a list with formation and dissolution
formulas, for CSTERGM processes). The left-hand side is used as the initial state.

coef a vector of EGP coefficients, or a list of vectors with elements formation and
dissolution for CSTERGM and variants.

process the ERGM generating process to use.

time.target if specified, the length of the time period for which trajectories should be simu-
lated (in which case the estimand is the number of events within this period).

event.target if specified, the number of transition events over which trajectories should be
simulated (in which case the estimand is the time required for this number of
events to be realized).

reps number of replicate trajectories to use.

cores number of cores to use for simultaneous simulation of trajectories.

rate.factor rate or pacing factor (sets the time scale).

verbose logical; show progress information?

... additional arguments to simEGP.

Details

This function can be used to estimate the expected amount of time needed for a specific number of
transitions to be realized (in which case event.target should be supplied) or the expected number
of transition events occurring within a specified time period (in which case time.target should
be supplied). Either way, one of time.target and event.target must be given. The function
works by simulating reps trajectories (using simEGP) for the specified time/number of events, and
returning the mean outcome (along with some other associated statistics).

A typical use case for this function is to calibrate the simulation time needed to obtain a reasonable
number of transitions from some starting point (e.g., to ensure burn-in). Simply simulating a fixed
number of transition events will result in a biased system state; however, one can avoid this problem

10 EGPRateEst

by using this function to determine the average duration needed for the desired number of events to
be realized, and then using this duration as a stopping rule for subsequent simulations. Alternately,
another use is to estimate the rate at which events accrue, e.g. to estimate compute time or mem-
ory requirements for a longer simulation study. Some processes are particularly prone to entering
regimes in which they produce very large numbers of events per unit phenomenological time, and
it can be useful to identify this issue before committing resources to simulating a long trajectory.

Note that, at present, all trajectories have the same starting point (the network on the left-hand side
of the input formula). They are hence coupled by the initial condition (despite being otherwise
independent). When equilibrium estimates from short sequences are desired, it may be wise to call
this function more than once with different starting networks and integrate the results.

Value

A vector containing the mean outcome (time or event count), its standard error, the standard devia-
tion of the outcome, and the number of replicates used.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, Carter T. (2023). “Continuous Time Graph Processes with Known ERGM Equilibria: Con-
textual Review, Extensions, and Synthesis.” Journal of Mathematical Sociology. doi:10.1080/
0022250X.2023.2180001

See Also

ergmgp for information on EGPs, ergm for information on ERGM specifications, simEGP

Examples

#Simulate a small network with triadic dependence
n <- 25
set.seed(1331)
co <- c(log(2.5/(n-3.5)), -0.75)
net <- simulate(network.initialize(n, directed=FALSE) ~ edges + esp(0),

coef = co)

#Estimate the time needed for 500 events in a LERGM
etime <- EGPRateEst(net ~ edges + esp(0), coef = co, process = "LERGM",

event.target = 500)
etime

#Estimate the mean number of events in the above time
eevents <- EGPRateEst(net ~ edges + esp(0), coef = co, process = "LERGM",

time.target = etime[1])
eevents #Expectation should be close to 500

https://doi.org/10.1080/0022250X.2023.2180001
https://doi.org/10.1080/0022250X.2023.2180001

simEGP 11

simEGP Simulate Trajectories from an ERGM Generating Process

Description

Given an ergm formula, simulate trajectories from a continuous time graph process having the
specified ERGM as a limiting distribution. A number of different processes are supported, and
termination may be specified either by phenomenological time or event counts.

Usage

simEGP(form, coef, events = 1, time = NULL, rate.factor = 1,
time.offset = 0, event.offset = 0, process = c("LERGM", "CRSAOM",
"CI", "DS", "CDCSTERGM", "CFCSTERGM", "CSTERGM", "CTERGM"),
use.logtime = FALSE, return.changetime = FALSE,
changetime.offset = NULL, return.history = FALSE,
return.networkDynamic = FALSE, verbose = TRUE, trace.interval = 100,
...)

simEGPTraj(form, coef, events = 1, time = NULL, checkpoints = 1,
rate.factor = 1, trajectories = 1, mc.cores = 1,
log.sampling = FALSE, process = c("LERGM", "CRSAOM", "CI", "DS",
"CDCSTERGM", "CFCSTERGM", "CSTERGM", "CTERGM"), use.logtime = FALSE,
return.changetime = FALSE, return.history = FALSE, verbose = TRUE,
trace.interval = 100, statsonly = FALSE, monitor = NULL)

Arguments

form an ergm formula defining terms for the EGP; the left-hand side must be a net-
work object, whose properties are used to determine the state space. For the
CSTERGM process, a list containing two such formulas must be used, with named
elements formation (for the formation model) and dissolution (for the dis-
solution model).

coef vector of coefficients for the EGP; for the CSTERGMs, this should be a con-
taining named elements formation and dissolution, each of which should be
the coefficient vector for its respective model.

events optionally, the number of simulated events to draw (if time==NULL); if time is
specified, this is ignored.

time optionally, the temporal length of the simulation; if not supplied, events is used
instead to determine when to stop.

rate.factor a multiplicative factor scaling the time evolution of the system; higher values
correspond to faster dynamics.

time.offset optionally, an initial “clock” offset for the start of a trajectory; this allows time
0 (the start of the simulation interval) to be set to an arbitrary time point. This is
only used for book-keeping (e.g., when a trajectory is run as multiple segments),

12 simEGP

and does not affect e.g. the meaning of the time argument (which is always
interpreted as units after the start time).

event.offset optionally, an initial offset to the step or event count for the start of a trajectory
(e.g., for trajectories being run in segments). As with time.offset, this only
affects book-keeping, and has no other effect.

process the ERGM generating process to use (described below).

use.logtime logical; internally, use logarithmic timescale? This can potentially protect against
overflow or underflow when rates are extreme, but can reduce precision and adds
some overhead.

return.changetime

logical; should we return a matrix with the last update times for each edge vari-
able as a network attribute?

changetime.offset

optionally, an n x n matrix of last change times (for trajectories being resumed
in process).

return.history logical; return the entire event history as a network attribute?
return.networkDynamic

logical; retain the entire event history and return as a networkDynamic object?

verbose logical; provide trace messages regarding simulation progress?

trace.interval for verbose output, the interval at which messages should be printed (in events).

checkpoints number of checkpoints at which the trajectory should be sampled (in addition to
the initial state).

trajectories number of independent trajectories to simulate (all start from the seed network,
but evolve independently).

mc.cores number of cores to use when simulating trajectories.

log.sampling logical; should time points to sample be logarithmically spaced?

statsonly logical; should only network statistics be retained (and not the graphs them-
selves)?

monitor optionally, an ergm formula with additional statistics to track.

... additional arguments (currently unused).

Details

An ERGM generating process (EGP) is a continuous time graph process with an equilibrium distri-
bution having a known ERGM form. See ergmgp for an overview of EGPs, including the specifica-
tions supported here.

simEGP generates a single trajectory from an EGP, with the EGP being specified via its graph po-
tential (as a ergm formula or pair thereof and associated coefficients) and its initial state being given
by the left-hand side of the input formula. The trajectory length can be specified either in terms of
the number of transitions to be simulated (events) or the length of the trajectory in phenomeno-
logical time (time); only the latter leads to the specified ERGM equilibrium (since event times are
not “random” times, stopping after a fixed number of events biases the final state). If desired for
bookkeeping purposes, an offset can be added to the simulation clock (which otherwise starts at 0),
event count (likewise), and most recent change times (also likewise). By default, the return value

simEGP 13

is a network object containing the final graph state, with network attributes giving the final time
("Time"), event count ("Events"), ERGM potential ("Potential"). A square matrix containing
the time of the most recent transition experienced by each edge variable can be returned as a network
attribute ("LastChangeTime") if return.changetime is selected. By default, the entire event his-
tory is not stored (as it can become extremely large). However, if return.history==TRUE, a matrix
containing the event history is saved and returned as a network attribute ("EventHistory"). Alter-
nately, setting return.networkDynamic=TRUE will lead to the event history being stored and the
entire trajectory being returned as a networkDynamic object, with edge activities set based on the
observed transitions. This format may be easier to use for visualization, or to query the state of the
network at an arbitrary point in the trajectory. The durations function can be used to extract edge
durations from such objects, as well.

For models with extreme transition rates, the option use.logtime may be useful for avoiding over-
flow or underflow; this only affects internal calculation, and not reported event times. Note that
logscale calculations add some overhead, and may be less precise in some cases than the default, so
this option is not suggested unless specifically needed.

simEGPTraj is a wrapper for simEGP, which adds additional capabilities for simulation of multi-
ple trajectories and/or sampling of longer trajectories. Each returned trajectory contains the ini-
tial state, as well as simEGP output from checkpoints points along the trajectory (including the
end). The default behavior (checkpoints==1) returns the initial and final states. Checkpoints
are evenly spaced (with termination criteria indicated as per simEGP) by default, or logarithmi-
cally spaced if log.sampling==TRUE. Multiple independent trajectories can be simulated by set-
ting trajectories>1; these can be run in parallel by setting mc.cores>1. If desired, the model
statistics can be returned without the graph state by choosing statsonly=TRUE, and a one-sided
monitor formula can likewise be used to calculate additional statistics if desired (with similar func-
tionality to the ergm simulate method). Otherwise, network.list objects are returned containing
the states in the respective trajectories.

Simulation itself follows the discrete event approach described in Butts (2023). Transition hazards
are computed for all edge variables (making the scaling no better then O(N2) for each update,
and are used to draw both the next event and the event time. Because the cost of computing each
transition is unrelated to waiting time, this algorithm can be quite efficient at simulating long time
periods when events are sparse (unlike, e.g. a discrete-time algorithm that updates in every period).
By turns, however, trajectories can become quite expensive (per unit phenomenological time) when
event rates are high. This issue is especially pronounced for the CRSAOM and DS processes, which can
both generate very high transition rates in some cases. Unless otherwise specified, event histories
are not stored, so storage costs are by default unrelated to trajectory length. Care should be taken
when storing event histories, as they can become quite large when transition rates are high.

To obtain equilibrium graph distributions from an EGP, it is generally (much) more efficient to
use the simulate functions in the ergm package: they employ MCMC algorithms that are uncon-
strained by the need to follow realistic trajectories, and that are optimized for rapid mixing. (In
particular, note that many systems can become kinetically trapped, spending very long periods in
metastable states that are far from equilibrium. This can be a real-world phenomenon, but is not
always desirable from a computational point of view. Functions such as simEGP are intended to
faithfully reproduce such dynamics, while MCMC algorithms are intended to avoid them.) Com-
parison of late-phase draws from a simERGMPot trajectory with equilibrium ERGM draws can be
used to evaluate convergence to equilibrium behavior (where desired); alternately, simEGP can be
seeded with ERGM draws to follow trajectories from equilibrated states. Consult the ergm package
documentation for details.

14 simEGP

Value

For simEGP, a network object containing the final graph state, with network attributes Time, Events,
and Potential listing the time, event count, and ERGM potential at the end of the simulation in-
terval. See above for additional attributes that may be added if history retention is activated. If
return.networkDynamic==TRUE, then the return value is instead a networkDynamic object con-
taining the event history as edge activity data; be aware that an edge will exist in this object if any
corresponding edge is ever active, so the raw graph state should not be used to access the final sys-
tem state. Instead, use the network.extract method to query the network state at the desired time
point.

For simERGMPotTraj, a list containing the simulated trajectories. These are either network.list
objects containing the networks at each checkpoint (with time, step, and potential attribute as de-
scribed above), or else matrices of trace statistics (if statsonly==TRUE). Note that the statistics
are in any event included as an attribute to each network list, so the effect of statsonly==TRUE is
simply not to retain the graph states.

Note

Using steps to control trajectory termination will lead to biased samples (sometimes severely so);
this is because transitions are not random times. If your goal is to obtain equilibrium draws (or
draws en route thereto), use time to set the stopping point. See EGPRateEst for a simple tool for
calibrating simulation times.

Author(s)

Carter T. Butts <buttsc@uci.edu>

References

Butts, Carter T. (2023). “Continuous Time Graph Processes with Known ERGM Equilibria: Con-
textual Review, Extensions, and Synthesis.” Journal of Mathematical Sociology. doi:10.1080/
0022250X.2023.2180001

See Also

ergmgp for information on EGPs, ergm for information on ERGM specifications, EGPHazard,
EGPRateEst, networkDynamic

Examples

#Small example of 2-ribbon generation
n<-100
set.seed(1331)
net<-network.initialize(n,directed=FALSE)
sim<-simEGP(net~edges+kstar(2)+nsp(1:2),

coef=c(109-log(n),-25,-1.25,3.25), time=100, process="LERGM",
verbose = TRUE)

plot(sim) #Return value is a single network

#Generate a trajectory showing the process at multiple stages
set.seed(1331)

https://doi.org/10.1080/0022250X.2023.2180001
https://doi.org/10.1080/0022250X.2023.2180001

simEGP 15

sim<-simEGPTraj(net~edges+kstar(2)+nsp(1:2),
coef=c(109-log(n),-25,-1.25,3.25), time=100, checkpoints = 5,
trajectories = 2, mc.cores = 1, log.sampling = TRUE,
process = "LERGM", verbose = TRUE)

length(sim)==2 #One entry per simulated trajectory
op<-par(mfrow=c(2,3))
for(i in 1:6) #Show the first trajectory

plot(sim[[1]][[i]],main=paste("Time",round(sim[[1]][[i]]%n%"Time",2)))
summary(sim[[2]]~edges+kstar(2)) #Show selected stats from the second
attributes(sim[[1]]) #Show precomputed statistics
par(op)

#A simple example with statsonly
set.seed(1331)
sim<-simEGPTraj(net~edges+esp(0), coef = c(log(2)-log(n), -1), time = 200,

checkpoints = 25, process = "LERGM", statsonly = TRUE,
monitor = ~triangle)

sim #Note the monitor stat
op<-par(mfrow=c(1,1))
plot(sim[,"Time"], sim[,"edges"], type = "l") #Time by edge count
lines(sim[,"Time"], sim[,"esp0"], col = 2) #Add ESP(0)s
par(op)

Index

∗ graphs
durations, 5
EGPHazard, 7
EGPRateEst, 9
simEGP, 11

∗ manip
durations, 5

∗ models
EGPHazard, 7
EGPRateEst, 9
simEGP, 11

∗ package
ergmgp-package, 2

∗ survival
durations, 5

durations, 5, 5, 13

EGP_init (ergmgp-package), 2
EGPHazard, 5, 7, 14
EGPRateEst, 5, 6, 9, 14
ergm, 2, 4, 5, 8, 10–14
ergmgp, 7, 8, 10, 12, 14
ergmgp (ergmgp-package), 2
ergmgp-package, 2

network, 13
network.extract, 14
networkDynamic, 12–14

simEGP, 5, 6, 8–10, 11
simEGPTraj (simEGP), 11

16

	ergmgp-package
	durations
	EGPHazard
	EGPRateEst
	simEGP
	Index

