
Package Vignette for ndtv: Network Dynamic Temporal

Visualizations (Version 0.13.4)

Skye Bender-deMoll

September 2, 2024

1 Introduction 2

2 A quick example 2

2.1 Reinventing the wheel . 2
2.2 What just happened? . 3

3 A tergm simulation example 5

3.1 Data Setup . 5
3.2 Animation Setup . 7
3.3 Playing an animation in R plot window . 7
3.4 Saving an animation as video . 8
3.5 Viewing animation as an interactive web page . 8
3.6 Viewing interactive animation in RStudio . 8
3.7 Other views . 8

4 Slicing time 10

5 Layout algorithms for animations 14

5.1 Kamada-Kawai adaptation . 14
5.2 MDSJ (Multidimensional Scaling for Java) . 14
5.3 Use a TEA attribute . 15
5.4 Graphviz . 15
5.5 User-generated layout functions . 15
5.6 Other techniques . 16

6 Vertex dynamics 16

7 Animating graphic attributes 18

7.1 Using dynamic attributes (TEAs) . 18
7.2 Functional plot arguments . 19
7.3 Special e�ects functions . 20

8 Exploring proximity with timelines 20

1

9 Dependencies for Animations 28

9.1 Java (for MDSJ) . 28
9.2 FFmpeg . 29

10 Compressing video 29

11 Reference for the main commands 29

11.1 compute.animation() . 29
11.2 render.animation() . 30
11.3 saveVideo() . 31
11.4 render.d3movie . 31

12 Limitations 31

12.1 Size limits . 31

1 Introduction

The Network Dynamic Temporal Visualization (ndtv) package provides tools for visualizing
changes in network structure and attributes over time. It works with longitudinal network
information encoded in networkDynamic (Butts et al. , 2023) objects as its input, and outputs
animated movies. The package includes timelines and other types of dynamic visualizations of
evolving relational structures. The core use-case for development is examining the output of
statistical network models (such as those produced by the tergm (Krivitsky, et al , 2021) package
in statnet (Handcock et al , 2003)) and simulations of disease spread across networks. The
ndtv (Bender-deMoll , 2024) package relies on many other packages to do much of the heavy
lifting, especially animation (Yihui, Xie et al. , 2013) and networkDynamic and optionally relies
external libraries (FFmpeg) to save movies out of the R environment. To use ndtv e�ectively
you must be already familiar with the functionality and assumptions of networkDynamic.

A more in-depth tutorial is located at http://statnet.csde.washington.edu/workshops/
SUNBELT/current/ndtv/ndtv_workshop.html

This work was supported by grant R01HD68395 from the National Institute of Health.

2 A quick example

2.1 Reinventing the wheel

Lets get started! We can render a trivially simple animation in the R plot window.

> library(ndtv) # also loads animation and networkDynamic

> wheel <- network.initialize(10) # create a toy network

> add.edges.active(wheel,tail=1:9,head=c(2:9,1),onset=1:9, terminus=11)

> add.edges.active(wheel,tail=10,head=c(1:9),onset=10, terminus=12)

> plot(wheel) # peek at the static version

> render.animation(wheel) # compute and render

slice parameters:

start:1

end:12

2

http://statnet.csde.washington.edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html
http://statnet.csde.washington.edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html

interval:1

aggregate.dur:1

rule:latest

> ani.replay() # play back in plot window

Hopefully, when you ran ani.replay() you saw a bunch of labeled nodes moving smoothly
around in the R plot window, with edges slowly appearing to link them into a circle. Finally a
set of �spoke� edges appear to draw a vertex into the center. If that didn't work, the footnote
has a link to an example of the movie 1 you are supposed to see. For some kinds of networks
the animated version gives a very di�erent impression of the connectivity of the network that a
static plot of the same network (Figure 1)

2.2 What just happened?

Simple right? Yes, but that is because most of the di�cult parts happened under the hood
using default values. In a nutshell, this is how it worked:

1. We created a networkDynamic object named wheel containing information about the
timing of edge activity.

2. render.animation() asked the package to create an animation for wheel but we didn't
include any arguments indicating what should be rendered or how.

3. Since render.animation() didn't �nd any stored coordinate information about where
to draw the vertices and edges, it (invisibly) called compute.animation() with default
arguments to �gure out where to position the vertices at each time step.

4. Because we didn't tell compute.animation() what time points to look at when doing its
computations, it reported this, "No slice.par found", and made a guess as to when the
animation should start and end (the earliest and latest observed times in the network) and
how much time should be incremented between each set of layout coordinate calculations.

5. compute.animation() then stepped through the wheel network, computing coordinates
for each time step and storing them. (This was the "Calculating layout for network slice from time 1 to 2"

... part.)

6. render.animation() also stepped through the network, using the stored coordinates,
plot.network() and ani.record() functions to cache snapshots of the network. It also
caches a number of �tweening� images between each time step to smoothly interpolate the
positions of the vertices. "rendering 10 frames for slice 1" ...

7. ani.replay() quickly redraws the sequence of cached images in the plot window as an
animation.

Of course, using defaults doesn't give much control of what should be rendered and how it
should look. For more precise control of the processes, layout algorithms, etc, we can call each
of the steps in sequence.

1http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

3

http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

1

2

3

4

5

6

7

8

9

10

Figure 1: Standard network plot of our trivial �wheel� network does not reveal dynamics. Com-
pare with animated movie version: http://statnet.csde.washington.edu/movies/ndtv_

vignette/wheel.mp4

4

http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4
http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

3 A tergm simulation example

Lets look at a more realistic example using output from the simulation of a crude dynamic
model. This uses the statnet tergm package to estimate the parameters for an edge formation
and dissolution process which produces a network similar to the Florentine business network
(?ergm::flobusiness) given as input. Once the model has been estimated, we can take a
number of sequential draws from it to see how the network might �evolve� over time. When we
generate the movie, we can include the model statistics on screen to see how they are in�uenced
by edge additions and deletions. This example also assumes you have some of the external
libraries working (Java and FFmpeg) so you run into problems, try skipping to Dependencies
(section 9) and come back.

Note that while the tergm package is not required to use ndtv, it is required for many of
the examples in this vignette. If you are not interested in running the model, you can just load
a corresponding example data object with data(stergm.sim.1).

3.1 Data Setup

First load in the main necessary libraries (each of which loads a bunch of additional R libraries).

> require(ndtv) # dynamic network animations

> require(tergm) # dynamic ergm simulations

Load in the original Florentine business network.

> if (require('ergm')){ # this example only works if ergm installed

+

+ data("florentine", package='ergm') # an example network

+ plot(flobusiness,displaylabels=TRUE)

+

+ } else {

+ plot(0,0,main='plot skipped because ergm not installed')

+ }

5

AcciaiuoliAlbizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

De�ne basic stergm model with formation and dissolution parameters.

> if (require('tergm')){ # this example only works if tergm installed

+

+ theta.diss <- log(9)

+ stergm.fit.1 <- stergm(flobusiness,

+ formation= ~edges+gwesp(0,fixed=TRUE),

+ dissolution = ~offset(edges),

+ targets="formation",

+ offset.coef.diss = theta.diss,

+ estimate = "EGMME")

+

+ } else {

+ print('example skipped because tergm not installed')

6

+ }

(time passes, lots simulation status output hidden)
Now we can simulate 100 discrete time steps from the model and save them as a dynamicNetwork

object.

> if (require('tergm')){ # this example only if tergm installed

+

+ stergm.sim.1 <- simulate(stergm.fit.1,

+ nsim=1, time.slices = 100)

+

+ } else { # if no tergm, we can use pre-generated example output

+

+ data(stergm.sim.1)

+

+ }

3.2 Animation Setup

Since this isn't a terribly exciting simulation, lets only calculate coordinates for part of the
simulated time period by using the start and end parameters of slice.par to specify a time
range.

> slice.par<-list(start=75,end=100,interval=1,

+ aggregate.dur=1,rule="latest")

> compute.animation(stergm.sim.1,slice.par=slice.par)

3.3 Playing an animation in R plot window

Now that we have all the coordinates stored, we can de�ne some parameters for render.par
to specify how many tween.frames to render, and tell it to display the time and the summary
statistics formula.

> render.par=list(tween.frames=5,show.time=TRUE,

+ show.stats="~edges+gwesp(0,fixed=TRUE)")

Then we ask it to graphically render the animation, passing in some of the standard
plot.network graphics arguments to change the color of the edges and show the labels with a
smaller size and blue color.

> render.animation(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue")

This takes some time and produces many lines output which we are not showing. The output
could also be suppressed by adding a verbose=FALSE argument.

After it has �nished, replay the movie in an R plot window.

> ani.replay()

Notice that in addition to the labels on the bottom of the plot indicating which time step
is being viewed, it also displays the network statistics of interest for the time step. When the
�edges� parameter increases up, you can see the density on the graph increase and the number
of isolates decrease. Eventually the model corrects, and the parameter drifts back down.

7

3.4 Saving an animation as video

We can also use the animation library to save out the movie in .mp4 format (assuming that
the FFmpeg or avconv library is installed on your machine).

> saveVideo(ani.replay(),video.name="stergm.sim.1.mp4",

+ other.opts="-b 5000k",clean=TRUE)

NULL

This should produce a movie2 in an R working directory on disk. The other.opts parameter
is set here to generate a higher-quality video than the default, but this will result in a large �le
size. For more information on compressing videos for the web, see Compressing Video (section
10).

3.5 Viewing animation as an interactive web page

An alternate way to view the animation is to render it out as an HTML5 animation embedded
in a web page using the ndtv-d3 player (Michalec, G., et al. , 2014). This has the advantage of
not requiring any external libraries, but does need a modern web browser to display properly.
render.d3movie operates similarly to render.animation, using the same coordinates stored
by compute.animation.

> render.d3movie(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue",

+ filename='stergm.sim1.html')

This should open web browser displaying the page with a Javascript animation player and
an interactive version of the network. There is an additional vignette demoing the features
(such as interactive tooltips, and embedding in Rmarkdown documents) of the ndtv-d3 player
included in the ndtv package. For an example, see http://statnet.github.io/ndtv-d3/

3.6 Viewing interactive animation in RStudio

If you use the RStudio IDE, you can view the interactive animation on the built in viewer with

> render.d3movie(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue",

+ output.mode = 'htmlWidget')

3.7 Other views

There is also a filmstrip() function that will create a �small multiple� plot using frames of
the animation to construct a visual summary of the network changes as a static plot.

> filmstrip(stergm.sim.1,displaylabels=FALSE)

2http://statnet.csde.washington.edu/movies/ndtv_vignette/stergm.sim.1.mp4

8

http://statnet.github.io/ndtv-d3/
http://statnet.csde.washington.edu/movies/ndtv_vignette/stergm.sim.1.mp4

t=75−76 t=78.125−79.125 t=81.25−82.25

t=84.375−85.375 t=87.5−88.5 t=90.625−91.625

t=93.75−94.75 t=96.875−97.875 t=100−101

Or plot the �lmstrip frames in an orthagonal projection with time

> timePrism(stergm.sim.1,at = c(75,87,100))

9

 7
5

 8
0

 8
5

 9
0

 9
5

10
0

tim
e

4 Slicing time

The basic network layout algorithms we are using, like most �traditional' network metrics, don't
really know what to do with dynamic networks. They need to be fed a static set of relationships
which can be used to compute a set of distances in a Euclidean space suitable for plotting. A
common way to apply static metrics to a time-varying object is to sample it, taking a sequence
static observations at a series of time points and using these to describe the changes over time.
In the case of networks, we call this �extracting� or �slicing�.

Slicing up a dynamic network created from discrete panels may be fairly straightforward but
it is much less clear how to do it when working with continuous time or streaming relations.
How often should we slice? Should the slices measure the state of the network at a speci�c
instant, or aggregate over a longer time period? The answer probably depends on what the

10

important features to visualize are in your data-set. The slice.par parameters make it possible
to experiment with various slicing options. In many situations we have even found (Bender-
deMoll and McFarland , 2006) it useful to let slices mostly overlap � incrementing each one by
a small value to help show �uid changes on a moderate timescale instead of the rapid changes
happening on a �ne timescale.

As an example, lets look at the McFarland (McFarland , 2001) data-set of streaming class-
room interactions and see what happens when we chop it up in various ways. First, we can
animate at the �ne time scale, viewing the �rst half-hour of class using instantaneous slices.

> data(McFarland_cls33_10_16_96)

> slice.par<-list(start=0,end=30,interval=2.5,

+ aggregate.dur=0,rule="latest")

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

We can also get an idea of how we are slicing up the network by using the timeline()

function to plot the slice.par parameters against the vertex and edge spells. Our very thin
slices (gray vertical lines) (aggregate.dur=0) are not intersecting many edge events (purple
numbers) at once.

> timeline(cls33_10_16_96,slice.par=slice.par)

11

0 10 20 30 40 50

time

ed
ge

 a
nd

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 c

ls
33

_1
0_

16
_9

6

1 1 1 1 1 1 12 2 2 23 3 3 34 4 4 4 456
77 7 7 78 8 89 9 9 9 9 9 910 1011 11 1112 12 12 12 12 1213 13 13 13 13 1314 14 1415 15 1516 1617 17 1717 17 1718 18 18 18 18 1819 19 1920 20 2021 21 2122 22 22 2223 23 23 23 23 2324 2425 25 25 2526 26262626 26 26 26 2627 27272727 27 2728 28282828 28 28 2829 29 29292929 29 29 2930 30 30303030 30 30 3031 31313131 31 31 31 3132 32323232 32 32 3233 33333333 33 33 33 3334 34 34343434 34 34 3435 35353535 35 35 35 3536 36 36363636 36 36 3637 37373737 37 37 3738 38383838 38 3839 39393939 39 39 39 393940 40404040 40 40 40 4041 4141414141 41 41 41 4142 42424242 42 42 42 4243 43434343 43 4344 44444444 44 44 44 4445 4545 45 45 4545 45 4545 45 45 45 454546 46 46 46 4646 46 4646 46 46 46 464647 47 47 47 47 47 47 474747 4748 48 48 48 48 48 48 4848 4849 49 4949 49 49 49 49 49 494950 50 50 5050 50 50 50 50 50 5050 50 5051 51 51 5151 51 5151 51 51 515152 52 5252 52 5252 52 52 52 5253 53 53 53 53 53 5354 54 54 54 54 54 5455 55 5556 56 565757 57 57 57 57 57 57 57 5757 57575858 58 58 58 58 58 58 58 5858 585859 59 5960 606060 60 60 60 6060 606060 6061 616161 61 61 61 6161 616161 616262 62 62 62 6262 62 62 626363 63 63 63 6363 63 63 636465666768 686970717273 73 73 73747576 76777879 7980 80 80 80 80 8080 80 8081 81 81 81 81 8181 81 8182 82 82 82 82 8283 83 83 83 83 8384 84 8484 8484 84 84 84 84 84 8485 85 8585 8585 85 85 85 85 85 8586 86 86 8687 87 87 87 8788 88 88 8889 89 899090 90 9090 90 909191 91 9191 91 9192 92 92 92 92 9293 93 93 93 93 9394 94 9495 9596 9697 97 97 97 979798 98 98 98 989899 99 9999 99 99 9999 99 999999100 100 100100100 100 100100 100 100100100101 101 101102 102103 103104 104104 104104 104104 104104105 105105 105105 105105 105105106 106106106 106 106 106 106106107 107107107 107 107 107 107107108 108109 109110 110 110111 111112112113114115116117118119 119120 120121122123124125 12612712812812912

34
56
78
91011121314151617181920

Notice that in the animation most of the vertices are isolates, occasionally linked into brief
pairs or stars by speech acts3. However, if we aggregate over a longer time period of 2.5 minutes
we start to see the individual acts form into triads and groups4.

> slice.par<-list(start=0,end=30,interval=2.5,

+ aggregate.dur=2.5,rule="latest")

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

3http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v1.mp4
4http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v2.mp4

12

http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v1.mp4
http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v2.mp4

To reveal slower structural patterns we can make the aggregation period even longer, and
let the slices overlap (by making interval less than aggregate.dur) so that the changes will
be less dramatic between successive views5.

> slice.par<-list(start=0,end=30,interval=1,

+ aggregate.dur=5,rule="latest")

> timeline(cls33_10_16_96,slice.par=slice.par)

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

0 10 20 30 40 50

time

ed
ge

 a
nd

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 c

ls
33

_1
0_

16
_9

6

1 1 1 1 1 1 12 2 2 23 3 3 34 4 4 4 456
77 7 7 78 8 89 9 9 9 9 9 910 1011 11 1112 12 12 12 12 1213 13 13 13 13 1314 14 1415 15 1516 1617 17 1717 17 1718 18 18 18 18 1819 19 1920 20 2021 21 2122 22 22 2223 23 23 23 23 2324 2425 25 25 2526 26262626 26 26 26 2627 27272727 27 2728 28282828 28 28 2829 29 29292929 29 29 2930 30 30303030 30 30 3031 31313131 31 31 31 3132 32323232 32 32 3233 33333333 33 33 33 3334 34 34343434 34 34 3435 35353535 35 35 35 3536 36 36363636 36 36 3637 37373737 37 37 3738 38383838 38 3839 39393939 39 39 39 393940 40404040 40 40 40 4041 4141414141 41 41 41 4142 42424242 42 42 42 4243 43434343 43 4344 44444444 44 44 44 4445 4545 45 45 4545 45 4545 45 45 45 454546 46 46 46 4646 46 4646 46 46 46 464647 47 47 47 47 47 47 474747 4748 48 48 48 48 48 48 4848 4849 49 4949 49 49 49 49 49 494950 50 50 5050 50 50 50 50 50 5050 50 5051 51 51 5151 51 5151 51 51 515152 52 5252 52 5252 52 52 52 5253 53 53 53 53 53 5354 54 54 54 54 54 5455 55 5556 56 565757 57 57 57 57 57 57 57 5757 57575858 58 58 58 58 58 58 58 5858 585859 59 5960 606060 60 60 60 6060 606060 6061 616161 61 61 61 6161 616161 616262 62 62 62 6262 62 62 626363 63 63 63 6363 63 63 636465666768 686970717273 73 73 73747576 76777879 7980 80 80 80 80 8080 80 8081 81 81 81 81 8181 81 8182 82 82 82 82 8283 83 83 83 83 8384 84 8484 8484 84 84 84 84 84 8485 85 8585 8585 85 85 85 85 85 8586 86 86 8687 87 87 87 8788 88 88 8889 89 899090 90 9090 90 909191 91 9191 91 9192 92 92 92 92 9293 93 93 93 93 9394 94 9495 9596 9697 97 97 97 979798 98 98 98 989899 99 9999 99 99 9999 99 999999100 100 100100100 100 100100 100 100100100101 101 101102 102103 103104 104104 104104 104104 104104105 105105 105105 105105 105105106 106106106 106 106 106 106106107 107107107 107 107 107 107107108 108109 109110 110 110111 111112112113114115116117118119 119120 120121122123124125 12612712812812912

34
56
78
91011121314151617181920

5http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v3.mp4

13

http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v3.mp4

Note that when we use a long duration slice, it is quite likely that the edge between a pair of
vertices has more than one active period. How should this condition be handled? If the edge has
attributes, which ones should be shown? Ideally we might want to aggregate the edges in some
way, perhaps adding the weights together. Currently edge attributes are not aggregated and
the rule element of the slice.par argument controls which attribute should be returned for
an edge when multiple elements are encountered. Generally rule='latest' gives reasonable
results, returning the most recent value found within the query spell.

5 Layout algorithms for animations

Producing �good� (for an admittedly ambiguous de�nition of good) layouts of networks is gener-
ally a computationally di�cult problem. There are a wide variety of algorithms and approaches
being developed. Doing layouts for animations adds additional challenges because it is usually
desirable that the layouts remain stable over time. Ideally this means that the layouts don't
change much unless the network structure changes, and that small changes in the network
structure should lead to small changes in the layouts. Many otherwise excellent static layout
algorithms are not stable in this sense, or they may require very speci�c parameter settings to
improve their results for animation applications.

The network.layout.animate.* layouts included in ndtv are adaptations or wrappers for
existing static layout algorithms with some appropriate parameter presets. They all accept the
coordinates of the previous layout as an argument so that they can try to construct a suitably
smooth sequence of node positions. They also include the default.dist parameter which can
be tweaked to increase or decrease the spacing between isolates and disconnected components.
The default value for default.dist is sqrt(network.size(net)), see ?layout.dist for more
information.

It is important to remember that there are many types of networks for which these methods
will probably not produce useful visualizations. We've had the most success with networks that
are fairly sparse, where a relatively small number of ties are changing between time slices, and
node turnover is not too high.

5.1 Kamada-Kawai adaptation

The function network.layout.animate.kamadakawai is essentially a wrapper for network.layout.kamadakawai.
It computes a symmetric geodesic distance matrix from the input network (replacing in�nite
values with default.dist), and seeds the initial coordinates for each slice with the results of
the previous slice in an attempt to �nd solutions that are as close as possible to the previous
positions. It is not as fast as MDSJ, and the layouts it produces are not as smooth. But it has
the advantage of being written entirely in R, so it doesn't have the pesky external dependencies
of MDSJ. For this reason it is the default layout algorithm.

5.2 MDSJ (Multidimensional Scaling for Java)

According to its authors:

MDSJ (MDSJ , 2009) is a free Java library for Multidimensional Scaling (MDS). It
is a free, non-graphical, self-contained, lightweight implementation of basic MDS al-
gorithms and intended to be used both as a standalone application and as a building
block in Java-based data analysis and visualization software.

14

MDSJ is a very e�cient implementation of MDS so network.layout.animate.MDSJ gives
the best performance of any of the algorithms tested so far � despite the overhead of writing
matrices out to a Java program and reading coordinates back in. Like all of the MDS-variants,
MDSJ will check and give errors if you try to call it with a non-symmetric distance matrix.
Currently max_iter is the only user argument that is passed through to the Java wrapper. It
controls the maximum number of optimization steps. The default value is 50 which is usually
su�cient. But it can be increased for layouts that appear to be not entirely converging, or
perhaps decreased to save some speed on simpler layouts.

Please note that the MDSJ library is released under Creative Commons License �by-nc-sa�
3.0. This means using the algorithm for commercial purposes would be a violation of the license.
Due to CRAN's license restrictions, the MDSJ binary is not distributed along with the (GPL-
licensed) ndtv package. Instead, the �rst time the layout is called, it will ask if you want to
automatically download and install the library. More information about the MDSJ library and
its licensing can be found at http://www.inf.uni-konstanz.de/algo/software/mdsj/.

5.3 Use a TEA attribute

The useAttribute layout is useful if you already know exactly where each vertex should be
drawn at each timestep, and you just want to render out the network. It just needs to know
the names of the dynamic attribute holding the x coordinate and the y coordinate for each time
step.

5.4 Graphviz

The Graphviz layout is a wrapper for the Graphviz https://http://www.graphviz.org soft-
ware library (John Ellson et al , 2001). If the library is installed on your system (see ?install.graphviz),
it provides a number of additional high-quality layouts. When layout is called it checks for a
working Graphviz installation (falling back to Kamada-Kawai if Graphviz cannot be found)
and writes the network to a temp �le using export.dot. Then the appropriate Graphviz layout
engine (default is neato) is executed via a system call, and the coordinates of the vertices are
parsed from the output.

Currently, the arguments to layout.par can be used to specify the Graphviz layout en-
gine to use (i.e. gv.engine='neato' for stress-minimized, gv.engine='dot' for hierarchical,
gv.engine='fdp' for force-directed, etc) and additional command-line control parameters can
be passed in via gv.args. For example, to use the 'dot' layout, but change layout rank direction
to Left-Right:

> layout.par=list(gv.engine='dot',gv.args='-Grankdir=LR')

See https://www.graphviz.org/content/command-line-invocation. Note that Graphviz's
graphic rendering parameters are not used to control network plot rendering (but they may
impact layout positions).

5.5 User-generated layout functions

We can de�ne new layout functions by following the appropriate naming structure. For example,
if we wanted a layout that just arranged all the active vertices in a circle we could de�ne a new
function network.layout.animate.circle.

15

http://www.inf.uni-konstanz.de/algo/software/mdsj/
https://http://www.graphviz.org
https://www.graphviz.org/content/command-line-invocation

> network.layout.animate.circle <- function(net, dist.mat = NULL,

+ default.dist = NULL, seed.coords = NULL, layout.par = list(),

+ verbose=FALSE){

+

+ n<-network.size(net)

+ x<-10*cos(seq(0,2*pi, length.out=n))

+ y<-10*sin(seq(0,2*pi, length.out=n))

+ return(cbind(x,y))

+ }

We can then re-compute a new animation for the simulation output using our new �circle'
layout function.

> stergm.sim.1<-compute.animation(stergm.sim.1,

+ slice.par=slice.par,animation.mode='circle')

> render.animation(stergm.sim.1)

> ani.replay()

5.6 Other techniques

We have tested some layouts using R libraries for doing SMACOF (de Leeuw , 2009) and
standard MDS optimization. The former gave high-quality results but was extremely slow, the
later often didn't give stable results. Both may be included in future releases of ndtv if the
performance issues improve.

6 Vertex dynamics

Edges are not the only things that can change in networks. In some dynamic network data-sets
vertices also enter or leave the network (become active or inactive). Lin Freeman's windsurfer
social interaction data-set (Almquist et all, 2011) is a good example of this. In this data-set
there are di�erent people present on the beach on di�erent days, and there is even a day of
missing data. These networks also have a lot of isolates, which tends to scrunch up the rest of
the components so they are hard to see. Setting a lower default.dist can help with this.

> data(windsurfers)

> slice.par<-list(start=1,end=31,interval=1,

+ aggregate.dur=1,rule="latest")

> windsurfers<-compute.animation(windsurfers,slice.par=slice.par,

+ default.dist=3,

+ animation.mode='MDSJ',

+ verbose=FALSE)

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

16

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

> render.animation(windsurfers,vertex.col="group1",

+ edge.col="darkgray",

+ displaylabels=TRUE,label.cex=.6,

+ label.col="blue", verbose=FALSE)

> ani.replay()

In this example6 the turnover of people on the beach is so great that structure appears to
change chaotically, and it is quite hard to see what is going on. Notice also the blank period
at day 25 where the network data is missing. There is also a lot of periodicity, since a lot
more people go to the beach on weekends. So in this case, lets try a week-long slice by setting
aggregate.dur=7 to try to smooth it out so we can see some structure.

> slice.par<-list(start=0,end=24,interval=1,

+ aggregate.dur=7,rule="latest")

> windsurfers<-compute.animation(windsurfers,slice.par=slice.par,

+ default.dist=3,

+ animation.mode='MDSJ',

+ verbose=FALSE)

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

6http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v1.mp4

17

http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v1.mp4

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

> render.animation(windsurfers,vertex.col="group1",

+ edge.col="darkgray",

+ displaylabels=TRUE,label.cex=.6,

+ label.col="blue", verbose=FALSE)

> ani.replay()

This new rolling��who interacted this week� network7 is larger and more dense (which is to
be expected) and also far more stable. There is still some turnover due to people who don't
make it to the beach every week but is possible to see some of the sub-groups and the the
various bridging individuals.

7 Animating graphic attributes

7.1 Using dynamic attributes (TEAs)

If a network has dynamic attributes de�ned, they can be used to de�ne graphic properties of
the network which change over time. We can activate some attributes on our earlier �wheel�
example, setting a dynamic attribute for edge widths:

> activate.edge.attribute(wheel,'width',1,onset=0,terminus=3)

> activate.edge.attribute(wheel,'width',5,onset=3,terminus=7)

> activate.edge.attribute(wheel,'width',10,onset=3,terminus=Inf)

7http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v2.mp4

18

http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v2.mp4

We must make sure the attributes are always de�ned for each time period that the network
will be plotted or else an error will occur. So we �rst set a default value from -Inf to Inf

before de�ning which elements we wanted to take a special value.

> activate.vertex.attribute(wheel,'mySize',1, onset=-Inf,terminus=Inf)

> activate.vertex.attribute(wheel,'mySize',3, onset=5,terminus=10,v=4:8)

We can set values for vertex colors.

> activate.vertex.attribute(wheel,'color','gray',onset=-Inf,terminus=Inf)

> activate.vertex.attribute(wheel,'color','red',onset=5,terminus=6,v=4)

> activate.vertex.attribute(wheel,'color','green',onset=6,terminus=7,v=5)

> activate.vertex.attribute(wheel,'color','blue',onset=7,terminus=8,v=6)

> activate.vertex.attribute(wheel,'color','pink',onset=8,terminus=9,v=7)

Finally we render it, giving the names of the dynamic attributes to be used to control the
plotting parameters for edge with, vertex size, and vertex color.

> render.animation(wheel,edge.lwd='width',vertex.cex='mySize',

+ vertex.col='color',verbose=FALSE)

> ani.replay()

The attribute values for the time points are de�ned using network.collapse, which controls
the behavior if multiple values are active for the plot period.

7.2 Functional plot arguments

Sometimes it is awkward or ine�cient to pre-generate dynamic attribute values. Why create
and another attribute for color if it is just a simple transformation of an existing attribute
or measure? The render.animation function has the ability to accept the plot.network

arguments as functions with special arguments to be evaluated on the �y at each time point as
the network is rendered. So, for example, if we wanted to use our previously created �width�
attribute to control the color of edges along with their width:

> render.animation(wheel,edge.lwd=3,

+ edge.col=function(slice){rgb((slice%e%'width')/10,0,0)},

+ verbose=FALSE)

> ani.replay()

Notice the use of the slice argument to the function instead of the original name of the
network. The arguments of plot control functions must draw from a speci�c set of named
arguments which will be substituted in and evaluated at each time point before plotting. The
set of valid argument names is:

� net is the original (un-collapsed) network

� slice is the network collapsed to be rendered with the appropriate onset and terminus

� s is the slice number in the sequence to be rendered

� onset is the onset (start time) of the slice to be rendered

� terminus is the terminus (end time) of the slice to be rendered

19

So in the example above, at each time point the edge attribute �width� is extracted and
used to control the red component of the RGB color. We can also de�ne functions based on
network measures such as betweenness:

> require(sna)

> wheel%n%'slice.par'<-list(start=1,end=10,interval=1,

+ aggregate.dur=1,rule='latest')

> render.animation(wheel,

+ vertex.cex=function(slice){(betweenness(slice)+1)/5},

+ verbose=FALSE)

> ani.replay()

In this example we had to modify the start time using the slice.par setting to avoid time 0
because the betweenness function will give an error for a network with no edges. The main
plot commands accept functions as well, so it is possible to do fun things like implement a crude
zoom e�ect by setting xlim and ylim parameters to be dependent on the time.

> render.animation(wheel,

+ xlim=function(onset){c(-5/(onset*.5),5/(onset*.5))},

+ ylim=function(onset){c(-5/(onset*.5),5/(onset*.5))},

+ verbose=FALSE)

> ani.replay()

7.3 Special e�ects functions

The package also includes some pre-written �special e�ects� functions that can be used for
common plotting tasks, such as coloring edges by their age. For example, we can have an
animation where edges start out red and fade to green as they age.

> render.animation(wheel,

+ edge.col=effectFun('edgeAgeColor',fade.dur=5,

+ start.color='red',end.color='green'),

+ edge.lwd=4,

+ verbose=FALSE)

> ani.replay()

8 Exploring proximity with timelines

We've already introduced the timeline function in the section of slicing time. Although it
can be helpful for debugging and revealing the over density of events in a dynamic network,
it is di�cult to understand what those events imply for changes in network structure and
connectivity. The movies do a reasonably good job (at least for sparse networks) of illustrating
the moment-to-moment changes in structure, but it is often hard to grasp the overall shifts
without rewinding and replaying the movie over-and-over.

The proximity.timeline attempts a sort of compromise. It collapses all the momentary
structure information down to a single vertical dimension, and uses the horizontal axis for
time. More precisely, the network is extracted at each time bin and the geodesic distances are
computed. But instead of creating a 2-dimensional layout as compute.animation does, the

20

network layout is a single dimension indicating how relatively `close' or `far' the vertices are
from each other. Each vertex's positions in the the time steps are linked together by a spline.
So, like the timeline, each vertex traces out a horizontal trajectory, but in this case it can swerve
diagonally up and down as it moves from group to group.

For example, if we return to the Stergm simulation example, we can contrast the (entirely
�ctional, simulated) histories of the Tornabouni and Strozzi family marriage alliances as a blue
and green lines on the proximity timeline. First we load in a short example dataset of the
�omarriage simulation.

> data(short.stergm.sim) # load a short example dataset of the flomarriage simulation

> proximity.timeline(short.stergm.sim,mode='sammon',

+ default.dist=10,

+ labels.at=c(1,16,25),

+ label.cex=0.7,

+ vertex.col=c(rep('gray',14),'green','blue'))

21

0 5 10 15 20 25

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f s
ho

rt
.s

te
rg

m
.s

im

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni
Lamberteschi

Medici
Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Acciaiuoli

Albizzi

Barbadori

Bischeri
Castellani

Ginori

Guadagni

Lamberteschi

Medici
Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Acciaiuoli
Albizzi

Barbadori

Bischeri
Castellani

Ginori

Guadagni

Lamberteschi

Medici
Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Initially, Tornabouni is part of the component many of the other families. Around t=9,
they split o� and become isolated, but then pair up with Laberteschi at t=21, and then rejoin
one of the groups from the big component (which itself split in half at t=19). For most of
the simulation the Strozzi (green), trace out a relatively horizontal existence as an isolate, but
eventually connect with the Acciaiuoli near the end.

Perhaps another way to illustrate how the proximity.timeline works is to combine it with
several static snapshots of the network (like those produced by filmstrip).

The toy_epi_sim dataset is an example network of a trivial simulated disease process spread-
ing over a simulated dynamic contact network among 100 individuals for 25 discrete time steps.
It was produced by the EpiModel package, and it includes an attribute named 'ndtvcol' cor-
responding to the simulated infection status of the vertices. The infection status changes over
time.

> data(toy_epi_sim)

22

> # set up layout to draw plots under timeline

> layout(matrix(c(1,1,1,2,3,4),nrow=2,ncol=3,byrow=TRUE))

> # plot a proximity.timeline illustrating infection spread

> proximity.timeline(toy_epi_sim,vertex.col = 'ndtvcol',

+ spline.style='color.attribute',

+ mode = 'sammon',default.dist=100,

+ chain.direction='reverse')

> # plot 3 static cross-sectional networks

> # (beginning, middle and end) underneath for comparison

> plot(network.collapse(toy_epi_sim,at=1),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at t=1')

> plot(network.collapse(toy_epi_sim,at=17),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at=17')

> plot(network.collapse(toy_epi_sim,at=25),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at t=25')

> layout(1)

23

0 5 10 15 20 25

−
10

0
−

50
0

50
10

0

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f t
oy

_e
pi

_s
im

toy_epi_sim network at t=1 toy_epi_sim network at=17 toy_epi_sim network at t=25

This plot can be hard to read as a small image, it is worth rendering it in a big plot window.
In the �rst network snapshot we see a few scattered infections (in red), some small components
and a medium size component. These groups show up in the the beginning of the timeline as
bundles of lines, with larger bundles corresponding to the larger components. There are several
red lines indicating the infections mixed in with the blue threads. As time progresses, the
bundles untwist and braid as vertices split o� to join other components. Some vertices become
isolates and tend to �y o� to the top and bottom of the chart.

The number of red lines grows as the infection spreads. By t=17 (the second snapshot)
the network has brie�y formed a large component, viable in the timeline as a fat bundle in the
center. At the end of the simulation (t=25) most of the network has become infected, and the
large component has broken up again into multiple medium-sized components.

Of course there are quite a few vertices (100) so it it is di�cult to see exactly what is going
on in detail, especially when they cross over each other. But the proximity timeline is sometimes
able to illustrate the features of the forward reachable paths and changes in overall network

24

structure in ways that can be missed when viewing a movie.
Naturally the proximity.timeline plots su�er from some of the same noise and reproduceabil-

ity problems that challenge the network layouts. The geodesic distance information is tightly
compressed onto a single dimension, so the exact ordering of the vertices in any speci�c region
may be due to chance, just as the rotation and relative positions of components in a network
plot are not directly meaningful. This is also a fairly experimental tool, so getting good results
still requires playing around a bit with the various algorithms and adjusting default.dist to
a value larger enough to force clusters close enough together without making them overlap too
much.

This inactive vertex spells present a challenge when tracing out the vertex trajectories. This
plot shows the timeline view vertex activity spells for the �windsurfer� dataset.

> timeline(windsurfers,plot.edge.spells = FALSE)

0 5 10 15 20 25 30

time

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 w

in
ds

ur
fe

rs

1 1 1 12 2 2 2 2 23 3 3 3 3 3 3 34 4 4 4 4 4 45 5 5 56 6 6 6 67 7 78 8910 10 1011 11 11 1112 12 12 1213 13 13 13 13 1314 14 14 14 1415 15 15 15 15 1516 16 16 16 16 16 16 16 1617 17 17 17 17 17 1718 18 1819 1920 21 21 21 2122 2223 23 2324 24 24 2425 25 2526 26 2627 27 27 27 2728 28 28 2829 29 29 29 2930 30 30 3031 31 3132333435 35 3536 37 37 37 37 3738 38 3839 39 39 39 39 39 39 3940 40 40 40 40 40 4041 41 41 41 41 4142 4243 43 4344 44 44 44 4445 4546 46 4647 48 48 48 48 48 4849 4950 5051 51 51 5152 52 52 5253 53 53545556 56 5657 58 58 5859 59 59 59 59 5960 60 60 606162 62 6263 63 6364 6465 65 65 6566 66 66 66 6667 67 6768 6869 69 69 69 6970 70 70 7071 717273 74 74 74 74 74 74 7475 7576 7677 7778 78 78 7879 79 7980 8081 8182 83 8384 8485 8586 87 87 8788 89 89 8990 9091 92 9293 94 95

25

Notice that in contrast to the McFarland classroom dataset we saw earlier, many of the
vertices are almost entirely unobserved (have very short activity spells).

The proximity.timeline function uses the spline.style argument to control how the
spline segments corresponding to vertex inactivity should be rendered. To help make the plot
more legible, we can use the start and end paramter to zoom in and render only a portion of
the time range.

> proximity.timeline(windsurfers,start=20,end=31,mode='sammon',

+ spline.style='inactive.gaps')

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

> proximity.timeline(windsurfers,start=20,end=31,

+ mode='sammon',spline.style='inactive.ignore')

26

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

> proximity.timeline(windsurfers,start=20,end=31,mode='sammon',

+ spline.style='inactive.ghost')

>

27

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

The ghost version (which is the default when gaps in vertex activity are detected) o�ers a
compromise by linking the observed spells with a faint dotted line, making it possible to trace
the trajectories across time without it appearing that there is much more data availible than is
actually the case. The 'inactive.ignore' option (the default when vertex activity gaps are
not detected) will always be the fastest because it isn't necesary to break the splines up into
segments.

9 Dependencies for Animations

9.1 Java (for MDSJ)

In order to use the MDSJ layout algorithm, you must have Java installed on your system. If
it is not installed, you can download it from http://www.java.com/en/download/index.jsp.

28

http://www.java.com/en/download/index.jsp

On Windows, you may need to edit your `Path' environment variable to make Java executable
from the command-line.

9.2 FFmpeg

FFmpeg http://ffmpg.org (or Libab https://libav.org/) are a cross-platform tools for
converting and rendering video content in various formats. It is used as an external library by
the animation package to save out the animation as a movie �le on disk. (see ?saveVideo for
more information.) Since FFmpeg is not part of R, you will need to install it separately on
your system for the save video functionality to work. The instructions for how to do this will
be di�erent on each platform. You can also access these instructions using ?install.ffmpeg

10 Compressing video

The saved video output of the animation often produces very large �les. These may cause
problems for your viewers if you upload them directly to the web. It is almost always a good
idea to compress the video, as a dramatically smaller �le can usually be created with little or no
loss of quality. Although it may be possible to give saveVideo() various other.opts to control
video compression8, determining the right settings can be a trial and error process. Handbrake
http://handbrake.fr/ is an excellent and easy to use tool for doing video compression into
the web-standard H.264 codec with appropriate presets.

11 Reference for the main commands

Included here are more complete explanations of the main function. You can also refer to the
man pages ?compute.animation and ?render.animation.

11.1 compute.animation()

The compute.animation() function computes a sequence of vertex layouts suitable for ren-
dering a network animation. It steps through a networkDynamic object and applies layout
algorithms at speci�ed intervals, storing the calculated coordinates in the network for later use
by the render.animation function. Generally the layouts are done in a sequence with each
using the previously calculated positions as initial seed coordinates in order to smooth out the
resulting movie.

The command takes several important arguments as named elements of the slice.par list.
The parameters indicate it how �slice up' the network when computing layouts (start, end,
aggregate.dur and rule), what type of layout algorithm to use (animation.mode), possible
parameters to control the layouts (as a list named layout.par) and how much to try to separate
nodes or disconnected components (default.dist). The computed coordinates are stored as
dynamic vertex attributes named animation.x.active and animation.y.active. The slice
slice.par list is stored as a standard network attribute. The network argument is modi�ed in
place, and returned invisibly

For each time slice, new coordinates are only computed for the active set of vertices, so the
function usually behaves appropriately for networks with changing vertex sets.

8The default settings for �mpeg di�er quite a bit depending on platform, some installations may give decent

compression without tweaking the settings

29

http://ffmpg.org
https://libav.org/
http://handbrake.fr/

The other parameters are as follows

� seed.coords an (optional) array of initial coordinates to be used for the very �rst layout
in the sequence or when vertices �rst pop into existance.

� weight.attr can provide the name of a numeric edge attribute de�ning weights for
edges to be interpreted by the layout algorithm. The values activity.duration or
activity.count can be used to weight edges by the duration or count of the edge's
activity spells in the time slice. the weight.dist parameter determines if the weights
should be treated as similarities (larger values means closer vertices) or distances.

� chain.direction a value of 'forward' indicates the chain of layouts should be computes
in forward temporal order. A value 'reverse' runs the chain backwards. For some layouts,
reverse-chaining means that isolated vertices are more likely to have positions close to the
partners they will be tied to.

11.2 render.animation()

This function is designed to step through a network object extracting slice networks according to
the previously cached slice.par settings. It retrieves the animation.x and animation.y co-
ordinates for each slice and passes them to plot.network to render the frame. If no slice.par
network attribute is found to de�ne the time range to render it will make one up using the
smallest and largest non-Inf time values and unit-length non-overlapping time steps. If no
stored coordinates are found it will call compute.animation. Additional plot.network con-
trol parameters (to set colors, line widths, etc) can be passed in via the ... arguments. See
?plot.network for the full list.

As mentioned earlier, a number of �tweening� animation frames are generated between each
network slice with the positions of the vertices interpolated between the slices. This creates the
illusion of smooth motion as the vertices change position, making it much easier to visually track
changes in the network structure. As each slice (and tweening slice) is plotted, ani.record is
called to store the image as a frame of the animation for later output.

Parameters to control the animation are read from a list passed in via the render.par

argument.

� tween.frames is the number of interpolated frames to generate between each pre-calculated
network layout. Default is 10. Increasing this will make the animation appear smoother
and slower, but will make the �le sizes much larger.

� show.time defaults to TRUE, in which case the x-axis of the plot will be labeled with the
onset and terminus time for each slice as it is shown.

� show.stats does nothing with its default value of NULL. But if it is set to a string, it
is assumed to be a formula and will passed to summary.stergm and the results used to
display the network statistics for the current slice on the plot.

� extraPlotCmds provides a way to present additional information (such as annotations)
on the plot. The value of this argument will be passed to eval() after each frame has
been plotted, so drawing commands can be added here.

There are also several lists of arguments that give default values that will be passed to
the appropriate lower-level commands. The plot.par list is passed to the par() command
and provides a way to con�gure some of the general plot details such as background color,

30

margins, fonts, etc. Similarly, the ani.options list is passed to the ani.options() command
to con�gure settings for the animation package such as interval to control the time between
frames in playback.

The render.cache argument provides a way to control the caching of the plot frames. The
default value of verb@render.cache='plot.list'@ causes each frame of the animation to be stored
in an internal list by the ani.record function of the animation library. This is very useful
for testing and replaying animations in R's plot window, but can be very slow (or cause out-
of-memory errors) for large animations. If the value is set to verb@render.cache='none'@, the
plot will not be recorded (but can be saved directly to disk via saveVideo()) and cannot be
replayed via the ani.replay() function.

11.3 saveVideo()

The animation package provides several neat tools for storing animations once they have been
rendered.

� ani.replay() plays the animation back in the R plot window. (see ?ani.options for
more parameters)

� saveVideo() saves the animation as a movie �le on disk (if the FFmpeg library is in-
stalled).

� saveGIF() creates an animated GIF (if ImageMagick installed)

� saveLatex() creates an animation embedded in a pdf (didn't work for me...)

Please see ?animation and each function's help �les for more details. With the exception of
ani.replay() each of these requires the presence of some external library software which may
need to be installed on your system as described in Dependencies (section 9).

11.4 render.d3movie

The render.d3movie can save out a network animation an interactive HTML5 SVG to display in
a web browser. Animations are generated using a process nearly identical to render.animation.
However, instead of using R's plotting functions and the animation library, the relevant infor-
mation is cached and written into a JSON-formatted �le, embedded into a web page along with
ndtv-d3 player, and displayed in a web browser. Details and additional examples are included in
the ndtv-d3 vignette, availible at: http://statnet.org/Workshops/ndtv-d3_vignette.html

12 Limitations

12.1 Size limits

Like most network algorithms, the time to compute layouts for animations tends to scale quite
badly with network size. We generally have only had enough patience to generate movies
for networks of less than 1000 vertices. There also seems to be quite a bit of overhead in
the animation package, so the generation process seems to slow down considerably for longer
duration networks or when slice or render parameters cause lots of slices to be generated.

31

http://statnet.org/Workshops/ndtv-d3_vignette.html

References

Algorithmics Group, University of Konstanz (2009) MDSJ: Java Library for Multidimensional
Scaling (Version 0.2). http://www.inf.uni-konstanz.de/algo/software/mdsj/.

Almquist, Zack W. and Butts, Carter T. (2011). �Logistic Network Regression for Scalable
Analysis of Networks with Joint Edge/Vertex Dynamics.� IMBS Technical Report MBS 11-
03, University of California, Irvine.

Bender-deMoll, Skye and McFarland, Daniel A. (2006) The Art and Science of Dynamic Network
Visualization. Journal of Social Structure. Volume 7, Number 2 http://www.cmu.edu/joss/

content/articles/volume7/deMollMcFarland/

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for Managing and
Animating Longitudinal Network Data: dynamicnetwork and rSoNIA Journal of Statistical
Software 24:7.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). https://doi.org/10.18637/jss.v024.i02.

Butts C, Leslie-Cook A, Krivitsky P, Bender-deMoll S (2023). networkDynamic: Dynamic Ex-
tensions for Network Objects. R package version 0.11.4, https://statnet.org/.

de Leeuw J and Mair P (2009). �Multidimensional Scaling Using Majorization: SMACOF in R.�
Journal of Statistical Software, 31(3), pp. 1�30. https://doi.org/10.18637/jss.v031.i03

Bender-deMoll S (2024). ndtv: Network Dynamic Temporal Visualizations. R package version
0.13.4, https://github.com/statnet/ndtv.

John Ellson et al (2001) Graphviz � open source graph drawing tools Lecture Notes in Computer
Science. Springer-Verlag. p483-484 https://www.graphviz.org

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software
tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 3,
http://www.statnetproject.org.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical
Software, 24(3). https://doi.org/10.18637/jss.v024.i03.

Krivitsky P, Handcock M (2021). tergm: Fit, Simulate and Diagnose Models for Network
Evolution Based on Exponential-Family Random Graph Models. The Statnet Project (https:
//statnet.org). R package version 4.0.1, https://CRAN.R-project.org/package=tergm.

McFarland, Daniel A. (2001) �Student Resistance: How the Formal and Informal Organization
of Classrooms Facilitate Everyday Forms of Student De�ance.� American Journal of Sociology
107 (3): 612-78.

Greg Michalec, Skye Bender-deMoll, Martina Morris (2014) �ndtv-d3: an HTML5 network
animation player for the ndtv package� The statnet project. http://statnet.org

Newcomb T. (1961) The acquaintance process New York: Holt, Reinhard and Winston.

Xie Y (2013). �animation: An R Package for Creating Animations and Demonstrating Statistical
Methods.� Journal of Statistical Software, 53(1), pp. 1�27. https://doi.org/10.18637/
jss.v053.i01.

32

http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
https://doi.org/10.18637/jss.v024.i02
https://statnet.org/
https://doi.org/10.18637/jss.v031.i03
https://github.com/statnet/ndtv
https://www.graphviz.org
http://www.statnetproject.org.
https://doi.org/10.18637/jss.v024.i03
https://statnet.org
https://statnet.org
https://CRAN.R-project.org/package=tergm
https://doi.org/10.18637/jss.v053.i01
https://doi.org/10.18637/jss.v053.i01

	Contents
	Introduction
	A quick example
	Reinventing the wheel
	What just happened?

	A tergm simulation example
	Data Setup
	Animation Setup
	Playing an animation in R plot window
	Saving an animation as video
	Viewing animation as an interactive web page
	Viewing interactive animation in RStudio
	Other views

	Slicing time
	Layout algorithms for animations
	Kamada-Kawai adaptation
	MDSJ (Multidimensional Scaling for Java)
	Use a TEA attribute
	Graphviz
	User-generated layout functions
	Other techniques

	Vertex dynamics
	Animating graphic attributes
	Using dynamic attributes (TEAs)
	Functional plot arguments
	Special effects functions

	Exploring proximity with timelines
	Dependencies for Animations
	Java (for MDSJ)
	FFmpeg

	Compressing video
	Reference for the main commands
	compute.animation()
	render.animation()
	saveVideo()
	render.d3movie

	Limitations
	Size limits

